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ABITRACT

This is a two-part technical report that considers the short-time
statistical modeling of atmospheric noise at VLF/LF frequencies and
applies a new noise model to the performance evaluation of various
generic VLF/LF communication modems. In Part One atmospheric noise is
examined mainly from a statistical point of view. Next, various statis-
tical models for this type of noise are examined; finally, a new model
is developed and compared with available datu. In Part Two this noise
model is applied to the evaluation of the error probability calculations
of various generic VLF/LF modems. Much of Part Two, particularly in
regard to a receiver system employing no clipping, is based on classic 1
white Gaussian noise aralysis applied to generic modems of interest.
Wheia nonlinear clipping is applied, the detailed statistical behavior of
atmospheric noise becomes more important, and results depend on the de-

tailed structure of the noise.
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PART ONE

ATMOSPHERIC NOISE MODEL
I INTRODUCTION

In Part One we develop an analytical model for atmospheric noise

that is characterized by its "impulsive” phenomena. Specifically, a
new model is developed for radioc noise that originates in lightning
'discharges and propagates large distances to VLF/LF receiving systems,
The emphasis here is on development of an accurate short-time, statis-
tical noise model that can be easily applied to the evaluation of tke
performance of existing VLF/LF communication systems, so that measured
noise parameters (such as average power and deviation of the noise
voltage envelope) and signal parameters can adequately specify system
performance. Noise parameters and estimation of rnoise parameters are
discussed in the fipal report on this project.l* Our goal here is to
model the short-time statistical characteristics of atmospheric noise as
accurately as is necessary for evaluating the performance of VLF/LF

communication systems of interest.

The model ing approach used here is based on the observation that a
Gaussian noise model is inappropriate for received atmospheric noise,
primarily because Gaussian noise does not have ‘he large dynamic range
cxhibited by the received noise envelope. Generally, the received
atmospheric nuise envelope has a log-normal distribution for large
c¢nvelope values and a Rayvleigh distribution for smaller dynamic ranges.
Since the envelope of a Gaussian process is Rayleigh distributed, atmo-
spheric noise has a Goussian behavior only for small dynamic ranges.

In 8 comnunication system limited by atmospheric noise, the large noise
cenvelspes have the most influerce on system performance, and so it is

important to characterize accurately the large dynamic range behavior of

atmospheric noise.

L
References asire listed at the end of this report.
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~We next discuss the background for the noise modeling problem. In
particular, we examine the physical characteristics of atmospheric noise,
Then we discuss existing models for atmospheric noise and introduce the
noise model developed in this study. Finally, the properties of this
new noise model are examined and compared with available atmospheric

noise data.
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11 PHYSICAL DESCRIPTION OF ATMOSPHERIC NOISE

A. Introduction

The main source of atmospheric noise at frequencies in the VLF
(3-30 kHz) and LF (30-300 kHz) bands is the lightning discharge. Each
flash generates a s. "uence of VLF pulses having certain characteristics.
The thunderstorm--as a whole--has a lifetime during which the nature of

the lightning flashes that take place and their raute of production may

vary. The occurrence of thunderstorms has a climatologically predictable

spatial and temporal pattern, Thus the definition of the thunderstorm

sources of VLF atmospheric noise may be considered under three divisions:

the signals due to a single flash, the sequence of discharges in a single

thunderstorm, and the distribution temporally and spatially of the

centers of thunderstorm activity over the globe.

After the VLF noise signals have been generated, they are propagated
in accordarce with the established laws of VLF radio propagation. Thus
in order to determine the noise environment at a particular time and
locality, three steps are necessary: first, to establish the nature
of the aoise signals emanating from a typical thunderstorm center; next,
to determine the relative activities and the distances of the main
thunderstorm centers from the locality being considered at the specified
time; and, finally, to introduce the modifications caused by propagation

to the noise originating in the various thunderstorm centers.

This chapter summarizes some of the aspects of VLF atmospheric
noise specified above. Particular attention is given tu source effects,
Most of the topics summarized here are considered in much greater detail

in Ref. 2.

-

This chapter was prepared by Dr. E. T. Pierce.
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B. The Signals from a Single Lightning Flash

1, The Flash to Earth

The duration of a discharge to earth varies from a few tens
of milliseconds to over a second; 400 ms is perhaps a reasonable mean
value. The flash is characterized by an initial L stage during which
a leader moves downward from the cloud towards the earth. This is
succeeded, after contact has been made with the ground, by an inter-
mediate stage characterized by the occurrence of one or more brilliant
return (R) strokes, After the last return stroke there is a further
gradual flow of current during the final (F) stage. The leader stage
of the flash to earth occupies some 50 ms, while 100 ms is a typical
duration for the F stage; thus st of the discharge is occupied by the

intermediate, R, stage.

Figure 1 illustrates the structure of the VLF roise due to a
flash to earth at a distance of 100 km. The field-change records in the
figure [(a)] are typical of those obtained using a bandwidth of 1-1000
Hz; these records are dominated by the electrostatic component of the
change in field. The records of Type (b) are for a bandwidth of 1-100
kHz. It is easily seen, from comparing records of Type (a) and Type
{b), that the main VLF pulses are associated with return strokes (R
pulses), but that small L pulses occur during the leader stage while
somewhat larger K pulses are present in the intermediate and iinal

stages.

The number of return strokes per flash to earth may vary from
one to ten or more; the average is about three to four. The median
interval between the strokes is some 50 ms, and the distribution of
intervals is skew towards thc large-interval end; some 15 percent of
the intervals exceed 100 ms, while about 20 percent are less than 30 ms.
Figure 2 illustrates the typical amplitude spectrum for an R pulse; the
vertical scalc applies at a distance of 100 km. Note that the VLF dis-
turbance due to the first return stroke is larger in magnitude and peoks
at a higher frequency than that caused by a subsequent return stroke,

However, the sizes of both the first and the subsequent R pulses vary
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over a wide range; if the amplitudes are expressed in decibels relative
to the median, the distribution is normal with a standard deviation of

about 6 dB.

The K pulses occur intermittently throughout the intermediate
and final stages. The average time interval between the pulses is
about 10-15 ms, and the distribution of time intervals is skew towards
the large value end. A typical flash to earth produces perhaps 25 K
pulses. The spectrum of an average K pulse tends to peak at a rather

higher frequency--see Fig. 2--than that of an R pulse, while the
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magnitude is perhaps some 10 percent of that for an R pulse, The ampli-
tude distributions for the K and R pulses appear to be similar, both
being log-normal with a standard deviation of some 6 dB., Thus, since
there are perhaps ten times as many K pulses as R pulses per flash, it
is not unusual for the largest K pulse in a discharge to ground to be

larger than the smallest R pulse,

Irregular L pulses occur during the L stage of the discharge.
Typically two or three pulse trains, each consisting of some 60 L pulses
with a total duration of about 3 ms, are produced. "“he disturbance
associated with an individual L pulse is small, and since the L pulses
are genersted for a time normally less than 10 ms, the L effects can

usually be neglected by comparison with the K and R phenomena.

2. The Intracloud Dischaggg

The structure of the VLF noise from a flash within a thunder-
cloud is much simpler than that of the disturbance associated with a
discharge to earth. Intracloud flashes do not generate R pulses, but
they produce intermittent K puises throughout the duration of the dis-
charge. In addition, small irregular pulses are generated in the initial
stages of the intracloud flash, but their effect is negligible compared

with those of the K pulses.

The durations of flashes to earth and those of intracloud dis-
charges are comparable. Furthermore, the time separation and magnitudes
of the K pulses are similar for the two types of flash. Thus, to a first
approximation, we may regard the VLF noise due to an intracloud discharge
as being identical to the contribution for a flash to earth associated

with K pulses.

C. Characteristics of a Thunderstorm

An average thunderstorm has a duration of perhaps 2 hours. During
the lifetime of the storm, the flashing rate varies appreciably; the
peak rate is about ten discharges per minute and the average some three

per minute. Most of the discharges in a storm are of the intracloud or
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allied types; typically, some 2C percent of all flashes go to earth, and .

this proportion increases with an increase in geographical latitude,

D. Climatology of Thunderstorms

It is usually estimated that about 2000 thunderstorms are active

at any instant and that the rate of lightning occurrence integrated over

|
the whole surface of the earth is about 100 per second. These figures §
are exactly compatible with an average flashing rate per storm of three

per minute.

There are three especially important global centers of thunderstorm
activity: in Southeast Asia, Central Africa, and South America. Each
center has its maximum of activity in the local afternoon; this--see
Fig. 3~--leads to a characteristic global diurnal variation in lightning

occurrence., This variation has of course, superimposed seasonal changes.

E. Summary

The procedures for estimating the atmospheric noise at a particular
locality and time, due to global lightning, are now clear. We first
determine the rate of flashing at each of the main thunderstorm centers .
from curves such as those of Fig, 3. If for any center the flashing
rate is 5r per second, then we have about 4r intracloud flashes and r
discharges to earth, Each flash to earth gives--on an average--three
to four R pulses, separated by some 50 ms, while all discharges, whether
to earth or not, generate about 25 K pulses at intervals of perhaps 10
ms. We may assume the flash occurrence within a main thunderstorm
center to be random, since many individual storms will be active simul-
taneously. Thus at peak activity one of the main thunderstorm centers
will be producing cbeoat 5. flashes per second, and therefore some 35 R
pulses and perhaps 1250 K pulses per second. The bigger R pulses will
give the log-normal high-amplitude end often apparent in an experi-
mentally observed amplitude distribution curve; the smaller R pulses
and the K pulses will yield the small-amplitude Rayleigh end of the
amplitude-distribution curve.
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After the characteristics (amplitude and temporal variations in

pulses emitted) of a particular source have been established, the contri-

bution of this source to the noise at the locality being considered can

be derived by introducing the appropriate propagational modification to

the source disturbance. Integration over all sources then gives the

total noisa. Note that, if all the significant source centers are very

distant or strongly

active at intermediate distances, then the received

noise will be dominated by a very large incidence of smallish pulses.
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Only if the activity is principally due to local storms, or to medium
activity at intermediate distances will the incidence of large isolated

pulses be significant,
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III SUMMARY OF EXISTING MODELS FOR ATMOSPHERIC NOISE

Before a new model for atmospheric noise is described, a brief
summary of available models is now presented. Various analytical models
for received atmospheric roise have been proposed, usually from one of
two points of view. Briefly, the most interesting approach from a
physical point of view takes the received noise to be the weighted sum
of contributions from individual lightning discharges. Although this
approach is physically well justifiable, it has the disadvantage that
the resulting models are not analytically tractable. The alternative
approach is an empirical method that yields analytical models chosen to
fit the measured statistics of the noise. Unfortunately, not only is
direct physical support for this procedure lacking, but the existing
empirical models suffer from the fact that only the first-order statis-
tics of the noise are considered while the higher-order statistics are

neglected.

.The models based on the weighted sum of individual lightning dis-
charges are often referred to as filtered-impulse models.?™® These

physically motivated noise models have the typical form

a(t) =Z a  p(t - ti) , (1)

i

where the {ai} are indepenaent, identicaliy distributed random variables
whose distribution is deduced from lightning discharge statistics and
propagation consideraticn; p(t) gives the form of the noise pulse re-
sulting from an individual lightning stroke, as shaped by the front-end
filter of the receiver; and the {ti} are the occurrence times of the
individual lightning strokes. Under the assumption that each individual
lightning stroke is indeperdent of others, various results*™® have been
obtained on the first-order statistics of the noise. In particular,
probability distributions are typically derived for these models, since
this distribution has been messured quite extensively.%,” = C Although

the analytical results due to different assumpfions on p(t), {tit, and

13
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{ai} result in varying agreement with measured data, the resulting
analytical probability distributions are quite complicated and difficult
to use in performance calculations. Indeed, the resulting probability
distributions often cannot be written in closed form except for some
limiting cases, Also the assumption of independence between \ndividual
lightning strokes which is crucial to the solution of the first-order
statistics of a(t) does not appear to be true at VLF.” This means that
any second-order (or higher-order) statistic would not be accurately
modeled by these noise models., Conceivably, the independent assumption
might be eliminated by introducing dependence in the filtered-impulse
modcl, as was done by Furutsu and Ishida,® who considered the case of
Poisson-Poisson noise. Although this interdependence model has not yet
been deronstrated to yield the distribution of interlevel-crossing
intervals observed by Watt and Maxwell at VLF,” it is already too diffi-

cult to handle for performance calculations,

Noise models based on the empirical method generally consist of .
mathematical expressions constructed to fit the measured - ‘ta on the
first-order statistics of the envelcpe of the received noise, These are .
models of the envelope disiribution cnd not of the whole ncise process
as is the case with filtered-impulse models, Not only are these em-
pirical models not phy.ically motivated, but by their construction they
are good for only first-order calculations. Although they are relatively
simple to handle for first-order calculations, their range of application

is limited.

Ibukun®” presents a good summary of various empirical models that
have been proposed. Several other workers** >3 have had some success
in finding physical justificatiun for empirical models. Perhaps the
most important of these models, because of its simplicity and its close-
ness of [it to measured data, is the modcl that takes the envelope of
the received atmospheric noise to be Rayleigh distributed at low volues
of the cnvelope and log-normally distributed ot high values. Beckmann®?
has given a good physical argument which supports this model, particu-

larly in the situation where there is little local thunderstorm activity.

14




Several workers*®

»*3,14 have proposed models similar to that considered
by Beckmann, although they differ in regard to how much of the two dis-

tributions should be combined to result in the best model.

One of the most important recent atmospheric noise models is due to
Hall'® and is called the generalized "t'" model. This modeling effort
takes a point of view different than those leading to either the filtered-
impulse models or the empirical models discussed above, The generalized

LI L

t model describes the received atmospheric noise as
a(t) = b(t)n(t) , (2)

where n(t) is a narrow-band Gaussian process, and b(t) is a Zlowly
varying process, independent of n(t). This model gives some physical
support to perhaps the simplest of the empirical models,*”s>® which has

probability PO(V) that the noise envelope exceeds the value V,

‘&V X'"
PLV) = {1 *(v—) | , (3)

where V is the average value of the envclope and zx and r are two

parameters to be chosen., This empirical model is also the same 2s the

T2

model studied by Mertz.*” s Not only do the first-order statistics of

Hall's generalized "t" model agree clesely with this class of empirical
moxlels, but it has the advantage over cmpirical models in that it can
be specified to give a good fit te the higher-order statistics of the

noise also.

Using the approach of Hall, we next develep an atmospheric noise

model that is perhaps mathematically simpler than Hall's generalized

t"” model and vet has as good an agrecment with first- and second-order

statistical data as the gereralized "t

15
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IV LOG-NORMAL NOISE MODEL

A, Introduction

Turning attention now to the problem of developing a model for re-
ceived atmospheric noise, we note that this noise is always observed
through the passband of some receiver filter. Now, if the receiver is
sufficiently narrow-band, the noise at the receiver output can reasonably
be assumed to be modeled well as a Gaussian process. This follows from
the fact that narrow-band filtered noise is the sum of contributions from
many independent lightning discharges, none of which is dominant at the
filter output., Experimental data indicate, however, that the bandwidth
required to achieve this condition at VLF is less than 50 Hz, so a
Gaussian assumption is not always physically viable at VHF. The goal of
the model development here is the formulation of an analytical model
that is both an accurate description of the received noise and suitable
for application to the calculation of VLF/LF communication system per-
formance. As far as the communication problem is concerned, it appears
necessary to model the atmospheric noise prior to any receiver opera-
tions, so a Gaussian assumption is not always justified., This is par-

ticularly true when nonlinear operations are performed by the receivers,

The modeling problem can be simplified by noting that for communica-
tion application the receiver bandwidths are substantially smaller than
the band center frequency. This fact enables the received atmospheric
noise to be regarded as a narrow-band random process. This is always
satisfied for communication problems and is not nearly as strong &an
assumption as a Gaussian assumption. Almest all the available experi-

~

mental data*:” T°" have beon obtained in narrow-band conditions.

Me¢asured datwa on atmospheric noise indicate thut this noise has a
Gaussian behavior at low amplitudes and a log-normally distributed
envelope for large amplitudes. Beckmann explains this fact by noting
that measured atmospheric noisc usually consists of the effects of many
lightning discharges around the world. When no single discharge domi-

nates at any instant of time, thon, applying the central limit theorem,

17
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we should expect a Gaussian behavior. On the other hand, when a par- *
ticular individual discharge dominates, the measured amplitude has the

statistical characteristics of the individual discharge which is essen- -
tially log-normal in character. Since the larger amplitudes have the

greater influence on the performance of any communication system, our

model emphasizes the log-normal characteristic of atmospheric noise.

In particular, we model atmospheric noise as a narrow-band process with

a log-normal envelope with the form
a(t) = A en(t) sin[wot + e(t)] s (4)

where n(t) is a stationary Gaussian process with zero mean end auto-

correlation given by
Rn(T) = n(t)n(t + =) s (5)

A is a constant (to be determined from noise power estimates), and g(t)

is a random phasc process independent of the Gaussian process n(t).

To illustrate the behavior of the envelope of this model, consider

Fig. 4. 1In Fig. 4(a), we plot a sample Gaussian process n(t). In Figs.

n(t)

4(b), (c), and (d) we plot e to show how the envelope of this model

behaves for typical values of Vd

root-mean-square voltage to the average voltage of the noise envelope).

(voltage deviation, the ratio of the

By proper adjusti:ent of parameters, this model reflects the impulsive
nature of atmospheric noise that has passed through a receiver front-

end filter.

Iu cur model given by Eq. (4) we have not yet specified the be-
havior of the phase process 3(t). Measurements of the instantancous
frequency distribution for atmospheric noise show that it is similar to

the frequency distriburion of narrow-band Gaussian noise. Hence, even

* -
Here x is the expected value of x.,
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thou .h the envelope behavior of atmospheric noise and that of Gaussian

noise differ considerably for large envelope values, the phase and fre-

quency behavior are quite similar, We therefore assume that g(t) be- -
haves like the phase of narrow-band Gaussian processes. This means that

at any given instant to’ the phase §(t,) is a random variable that is |

uniformly distributed over [0, 2rr] and is independent of the envelope.

B. Properties of the Log-Normal Model

The log-normal narrow-band noise model for atmospheric noise is

given by
a(t) = A en(t) sin[mot + e(t)] . (6)
Assuming stationarity we note that the envelope of this noise,

n(t)
e

E(t) = A , (D

has autocorrelation given by

E()E(t + +)

RE(T)

2 en(t)+n(t+1')

= A (8)

2
9 [o +R (T)]

n n

= A e )

2 . . ’
where 5y = Rn(O) is the variance of n(t).
The average power of the noise model is given by
Rn(O) = a(t)a(t + =) (9)

2 2 2
2 a2 MY g [wot + Q(t)]
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2
Ra(o) = A2 e2n(t) sin [wot + e(t)]
2
= A2 e20n X L
= X 3
A2 2°i
A 10;
5 ¢ . (

If we assume that the noise has an approximately flat energy distribution
of NO watts per hertz across the receiver front-end bandwidth of W Hz,
then we have the relation

A
Now = 2—- e . (11)

Consider the average and rms voltages of the envelope. The average

is

ave

[

= A e 3 (12)

and the rms envelope voltage is

2 e2n(t)'%

2 ‘ (13)
7
A e n

E = Ez(t) = !A
rms {

voltage deviation, V , is defined as

d’
¢ - 20 1og |rms]
a ~ glO'E ‘
ave

[ dn]
20 log e
10( ‘

IOnn loglo e

(14)
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2
Knowledge of Vd gives us the value of Oy Similarly, knowing Vd (hence

2
on) and the noise power density, No’ we can find the parameter A, Values

of Vd and of Fa’ which is directly related to No’ are estimated in CCIR

reports.19

We have now related parameters of our noise model directly to the
measurement parameters that are typically used in world CCIR maps. Ovr
next task is to show how well this noise model agrees with available
statistical data on atmospheric noise. The measurements required to

check the validity of the model fall into two categories,

The first of these categories, and the one for which the greatest
amount of experimental data is available, is concerned with the first-
order statistics of the random process., The particular measurements
in this category that have been reported in the literature are measure-
ments of the probability distribution of the enveclope of the received
noise,%,7 710 and measurements of the average number of level crossings
per unit time of a fixed level by the envelope of the received noise.,” 8
This latter calculation has not been carried out for any of the empirical
models discussed earlier, although Nakai®® has obtained numerical re-
sults in agreement with the experimental data of Watt and Maxwell for a
filtered-impulse model in which the noise pulses occur in a Poisson
manner. Halll® has also obtained good agreement with experimental data

A}

with his generalized "t" noise model. In fact, he has also shown good

agreement with second-order experimental data which we discuss next.

The second category of measured data, and the one where far fewer
data are available, is concerned with the second- and higher-order
statistics of the random process. The particular measurements that have
been reported in this category are measurements of the probability dis-
tribution of the time interval between crossings of a specified level by
the envelope of the ncise.” While available experimental data are sparse,
being restricted to a few measurements at VLF, it is also true that the
analytical derivation of these statistics is complicated, requiring
machine computation in the general case. Hall was able to compare 2a

n* "

limiting case of his generalized 't noise model with second-order data




and demonstrated reasonable agreement between his model and the available .
data. We use similar approximatioqﬁ,to demonstrate agreement of our

log-normal model with higher-order data,

1. First-Order Statistics

The envelope of our log-normal narrow-band atmospheric noise

model is given by

en(t)

E(t) = A (15)

We now derive some first-order statistical properties of this envelope

and compare them with available data. At any instant of time,

E=-Ae (16) {

is a random variable, where n is a zero-mean, Gaussian, random variable

with variance Ui' The probability distribution of E is i
P(V) =P _{E <V} .
= Pr{A e’ < V} %
=P {e" < v/} an

= Pr{n < loge(V/A)}

loge(V/A) .
WV(J
n

Pr[A) is the probability of the :vent A, and
X x

where

V() = —1/.23 e © dx (18)

A A B A B
-




is the well-known distribution of a zero-mean, unit-variance Gaussian

random variable.®! Defining

P (V) 1 - P(V)
(o]

loge(v/A) (19)

_\/‘2’ 3
a
n .

we compare this probability distribution of the envelope derived from

1 -

our model with measured data on the distribution of the envelope cf at-
mospheric noise, Figures 5 and 6 compare the above distribution with

experimental datsa for various receiver parameters, Note that

\% = E =A e . (20)

Hence

PO(V) = \l{

(21)
Ve

and % is the only free parameter in the figures.

The plotted results are reasonably self-explanatory, showing
good agreement between the model and the measured data. Again, we point
out that our intention is to model the large envelope variations more
accurately than previously, since these variations have the most in-
fluence on communication system performance. Consequently, our model
matches the experimental data more accurately for larger values of the

envelope.

We next -onsider another experimentally measured first-order
statistical property the average frequency of envelope level crossings.
Consider the envelope process and the level B indicated in Fig. 7(a).

We are concerned with the average number of times E(t) crosses the level
B in T seconds. This is equivalent to asking for the average number of

times the Gaussian process n(t) crosses the level

24
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b = 1oge(B/A) . (22)

In Fig. 7(b) the equivalent Gaussian process crossing level b is shown.

We define a counting runction

c(t)

\ﬁ[n(t) - bJ\
(23)

H

|ale(t) - B1| ,
whicbh gives a unit impulse euich time [n(t) = b or E(t) = B} the level b
is crossed by n(t). Since we want to count the rumber of crossings in

a time interval of length T, the count is given by

T
{
N (T) :/ c(t) dt
0
T (24)
= | Juln(t) - b1} dt
0

Using the well-known relationship

d . _df(g) dg
T {(flg)} = % ar s (25)
we get
T
f :
N5 (T) :J s(n(t) - blja(v)| dt . (26)
0

Since we have a stationary Gaussian random \ariabl:, n(t) and n(t) are

statistically indepeirdent. This fpllows from the relation

- l1d 2
n()a(t) = Ef-j—tn (t)
1 d 2 o7y
= Ea—t_ n (t) (273

25




Ng(T) = 8(n(t) - bl [A(OT T .
The random variable n(t) has a density function

| o
I

————

1

Pn(w) = —.V—-ﬁ exp 5
2137 2g

n n
SO
5(n - b) = 8 o = b)pn(a) do
-
= p,(b)

ol 2
N AR

(28)

(29)

(30)

The probability density of n(t) is found by noting that the derivative

is a linear operation and that linear operations on a Gaussian process

result in another Gaussian pr.~ess, Thus n(t) is a2 Gaussian random

variable with zero mean and variance determined as follows:

R(-) = n(t)nit + =)

. d
R("’) = T R(?)
-r
= n(tin(t + =)
8y stationarity we have

R(~) n(t - =)n(t)

(31)

(33)




sO

d

R(r) = =— R(1)
dr
(34)
= = n(t - r)n(t)
Hence
. ) 2
R(0) = - [A(t)] , (35)
and the probability density of 1(t) is
2
Py = 1 - exp‘- _— . (36)
2af- R (0) I 2[— R (0)]
L n J n
The term |i(t)| is giver by
n(t) | = 2 ~ pﬁ(d) da
0
(37)

= ” 2a exp‘— ——92——-} dey
; ;2n| - 'rin(())l ( 2[- iin(o)]‘

Since ﬁn(O) is related to how rapidly the envelope process goes through
changes, the quantity !ﬁ(t)| depends ¢n higher-order statistics of the

enveloupe process,

Combining Egs. (28) and (30) we find that the average number

of times the envelope of our noise model crosses the level B in T

) 2
‘\B(T) = #% (,‘Xp:* [ie(‘f/‘\) : . (33)
2m" 2-"
n n

For the special case of T = 1, we have

seconds is given by

(39)




g

Figure 8 compares this average level crossing with experimental data,

It shows a basic agreement of the results derived by using our log-normal
model with measured level-crossing results., Again, we note that the
agreement is somewhat better for the larger values of the envelope in-
tensity. The significance of this agreement is, of course, that it is
further verification of the applicability of the model ac far as the
first-order statistics of the noise envelope are concerned. From a
physical point of view, this agreement increases confidence in the log-
normal narrow-band noise model, since it indicates that on the average
the envelope of the received noise is accurately modeled. To complete
the verification of the applicability of this noise model for atmospheric
noise, it remains to investigate the manner in which these variations
occur with time. This is, of course, a function of the second- and
higher-order statistics of the noise, wnich is the next topic of

discussion.

2. Higher-Order Statistics

Completion of the verification of the applicability of the
narrow-band log-normal process to received atmospheric noise requires
investigation into the higher-order statistics of the noise. Although
the average rate of level crossings of the envelope of our;model
gererally agrees with observed atmospheric noise, we must yet verify
that the higher-order statistics of the model can be so chosen that the
relationship between the noise process at various distinct times, as
predicted by the model, is consistent with measured results. As men-
tioned earlier, the available experimental data  that are dependent on
the higher-order statistics of the noise consist of measurements of the
probability distribution function of the interval between successive
crossings of a fixed level by the envelope of the noise. Inspection of
these data indicates that at VLF the noise pulses do not in general
occur in a Poisson fashion but rather that received noise pulses sre
usually statistically dependent on preceding ones. Generally, calcu-
lation vi the probability distribution of the interlevel-crossing tize

interval is difficult, requiring numerical techniques to obtain even an
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approximate solution.®2724 This is true even for the simplest case of
Gaussian processes, which is the only case that has been treated in any
detail in the literature.23,24 Even in the Gaussian case, the problem
is further restricted by consideration of Markov processes and a few
other specific spectra. Therefore, we will not attempt to find an exact
solution for the process of interest here but will resort to simplifying

assumptions in order to obtain an approximate solution.

Consider the envelope, E(t), crossing some level B, and let T
be defined as the interval between a down-crossing at the level B and
the next up-crossing of the same level. (This is the statistical data

measured by Watt and Maxwell.”) The probability that T exceeds To is

given by
PolTol) = Pr{T > To}
L
= P {E(D) < B,te[0,T J|E(O-) > B,EO4) < B} (40)

P {E() s B,te[0,7 JiE0-) > B,E(04) < B}
P {E(0-) > B,E(0+) < B} ’

H

where E(0+) is the value of E(t) at a small increment of time after
t * 0, and E(0-) is the corresponding value at a small increment of

time before t = 0,

At this point, we make several simplifying assumptions by
considering N time samples of the envelope process and using these time

samples to represent the process. Taking

Tor o ey by (41)

as the N + 1 time samples, we approximate the desired probability by

P{E(t)) S B,E(ty) $B,.. E(ty) S BE(t ) >B}

‘ > . (42
Pol To) Pr{Eito) > B,E(t,) < B} )
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Recall that our envelope process
E(t) = A "V (43)
is band-limited to W, so in To seconds there are approximately

N=2WT (44)
o

independent samples. Taking samples to be independent, we then have
N

p{E(t ) > B}ﬂ p {E(t,) =B}

k=1
PolTo) = P {E(t,) > B}P {E(t)) < B}

N (45)
aﬂ P {E(t,| s B}
k=2
From Eq. (17) we have
log (B/A)
p{E(t ) < B} = of — ; (46)
r k ; ) !
o}
n
therefore
loge(B/A) (2WT0—1)

PO(TO) =1y —':V?—- . (47
n

In Fig. 9 we plot this distribution along with data taken from
Watt and Maxwell, The assumption of independent samples neglects certain
dependencies between adjacent level creossings. This assumption was
necessary to obtain a simple closed~-form expression for PO(TO) and is
not necessarily a limitation of the log-normal model. Indeed, by appro-
priately choosing Rn(v), a more accurate cgreement with data is possible,
and only our ability to compute Po(To) in a convenient form is limited.

In a more general case, for example, we would have
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ves | ——— exp{- g'g olda
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2

o = 2\ 2
-2 -
1 o ‘_ ("1*“2)% ARUEN o d
2( 2 % pl 2 2 2-R t, -t Oi %
) zﬂ[on(cn—nn(tl-to»] %] n n( 1 o)
(48)
where
b = loge(B/A)
and
K = }Rn(ti -~ tj)' is an (N + 1)-dimensional covariance matrix.
i,J
C. Conclusion

We conclude that the log-normal atmospheric noise model gives good
agreement with measured data, especially for larger values of the enve-
lope. This applies for the first-order statistics as well as the higher-
order ones, This model is also relatively easy to handle analytic.lily

and thus is useful for calculating the performance of communication

systems,
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PART TWO

ERROR PROBABILITIES OF GENERIC VLF/LF MODEMS
1 INTRODUCTION

In this part we discuss the performance of various generic VLF/LF
communication systems of interest. The usual performance measure of
probability of error will be expressed in terms of the signal strength
and noise parameters at the receiver's antenna, As we have discussed
in Part One, the noise has an impulsive non-Gaussian behavior which we
have modeled. The receiving systems we will consider can also have
nonlinear clipping which, together with the non-Gaussian noise behavior,
makes computation of the error probabilities difficult if not impossible
without some assumptions. Our assumptions are discussgd and justified
as they arise in the development of error probability expressions. We
first discuss the noise model, the signal characteristics, and the re-
ceiving system models before carrying out the development of the error
probability expressions, The VLF/LF communication systems we consider
include binary frequency shift keying (FSK), phase shift keying (PSK),
and minimum shift keying (MSK), all operating in a coherent mode. On-
off keying (CW) and noncoherent FSK are also considered, as well as
differential phase shift keying (DPSK). Two signaling schemes that use

long sequences of MSK pulses (chips) are also discussed,.
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II PROPERTIES OF THE NOISE MODEL

At VLF and LF, the dominant noise source is generally atmospherics.
Local activity often produces more noise, but this is much more variable
and unpredictable, In our application, receivers will usually be located
in areas far from man-made noiée sources and high thunderstorm areas.

We therefore assume that the noise is due to atmospherics, which are due

to distant thunderstorm activity.

The short-time noise model we use assumes the form
a(t) = A en(t) cos[Zﬂfot + g(ti] , (49)

where n(t) is a stationary Gaussian process, g(t) is a stationary randcm
process independent of n(t), and A is a constant. As we have shown in
Part One, this noise model agrees well with available data, including
second-order level-crossing data., The agreement is particularly good
for large fluctuations of amplitude. Since large fluctuations of noise
amplitude are more important than average noise in terms of causing
errors in any system, it is particularly important to model this region
accurately. We note that for small fluctuations the experimental data
show the noise to behave like a Gaussian process. Althovgh our model
does not give Gaussiar noise at small fluctuations, we -akt use of the

above experimental result as a justification for ore oi ~ur assumptions,

Consider next some of the properties of this noise model and their
relation to measured noise parameters. The phase random variable at time

t is uniformly distributed over (0, 2~]. Hence at sny time we have

2 2 2nct 3
a2y A% MY s [2-rot . g(t)]
*)
R (50)
21 n
< A 5 C »
41
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where

Cosz(Zﬂfot + e(z)] = (51)

L
2

e (52)
n

Although we have assumed stationcrity in our short-time ncise model, it
is clear that there are diurnal and seasconal variations in the noise
characteristics. These slow variations can be accounted for in the two

. . . . 2
basic parameters of our short-time noise mode: given by A and =
n

To relate A and ﬁi to importan. measured noise parameters, we now
note that the noise model is valid for the atmospheric noise that hes
been filtlered through 2 receiver front-eind filter of baundwidth W. In
our appiication, W is between 200 Hz and 1000 Hz. Assuming that the
atmcspheric noise pefore filtering is approximately flat in spectrum

over the filter bandwidth, we have

2 1
a (t) = = A 2} =N W IJB)
2 o

where NO is the noise spectral density per unit bandwidth, The envelope

of the process is

n(t) .
E{(t) = A e ( (54;
which has an average value
1.2
N, o n i
E(t) A e (55)

and an rms value

7 “n o
‘\/E (t) =4 e X (56)

A measure of the variability of the noise fluctuations is the quantity

Vd, defined as




Vi

2
dn
= 20 5 logloe

2
10 o, logloe .

1

Equations (53) and (57) relate the parameters of our roise model (A, on)

to the well-known atmospheric noise parameters, Vd

antcenna noigé_figure which is simply related to No).

(57)

and Fa (effective

A qUantify of interest later is the probability that at ary given

time t the envelope E(t) will exceed some level B > 0,

consider the event
it
HB) = {E(6) =4 ™Y 5 B}

and the probability of this event

Py = Pr{H(B)l

The ey .oat H(B)Y is cquivalent to the event

by B
R > Toeg By
S0
P . P tn(t) ~ loyg EJ
B I e A)
B
N
el ~!' )
n
where
1 ts
Mx) - _"'T; exp - 9—-: dt =1 - 1(x)
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In particular,

(58)

(59)

(61)

(62)
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If the envelope E(t) is restricted to be less than or equal to B, then

the resultant envelope c(t) is

n(t)
e

A if not H(B)
C(t) = (63)
B if H(B)
with probability density
pc(x) = g(x - B)PB + [1 - uB(x)]pn[IOge(x/A)] (64)
where
p (x) = -ﬁ—ug—-l eXp‘- xz I (65)
n ‘VZWC l 232 ‘ ’
n n

, (66)

and #(x) is the Dirac delta functionr. The mean square of this "clipped"

envelope is

loge(B/A) 2 ‘ 2
2 A - 2
c© - exp,2y - 5 dey + BP
Do~ l 27 ‘
—p n n
5 2  log (B/A) 22
2 Z(]n e 1 ('Y - zjn) 2
A% e 6xXp i~ ————n\ dy + R°P (67)
2 B
;;2”4 l 29 ‘
- n n
2 2
27 ]‘Og (B/A) - 25 .
2 n e n 2
=A e

| fman i,
R

14




Using Eq. (61) for PB we have

2 2
— < / -
sy 27 ; log_(B/A) - 20 I o [log (B/A)

¢ -Ae M- i ) NS . (68)
I \’O ’ ;;0
n n

This noise model is used to compute the desired error probabilities.

2
The parameters A and 2 are obtained rrom measured and predicted values
of Fa and Vd. Equation (68) is used to approximate the effects of
clipping on the received noise,
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III SIGNAL REPRESENTATION

The modulation system to be used at VLF is strongly limited by the
characteristics of the high-power amplifiers and high-efficiency antennas
that constitute present stationary VLF transmitters. The most desirable
modulation signals would maximize the information transmitted in the
allowed bandwidth through a noisy channel for given fixed peak power.
Given a peak power limitation, the highest average power is radiated
when the transmitted wave has a constant envelope. An additional factor
that necessitates a constant euvelope is the final RF amplifier. Existing
high-power VLF facilities use Class C amplifiers because of their effi-
ciency; this mode of operation requires constant envelope and continuous
phase for highest efficiency. Discontinuity in envelope or phase of an
RF wave also causes large transients in the transmitter output. Tran-
sient response of the transmitting system depends upon the system band-
width, which at VLF is generally limited by the high Q inherent to the

most efficient transmitting antennas.

Because of practical limitations on the transmitters at VLF and LF,
we consider only angle-modulated signals, with emphasis on those that
are phase continuous. In particular, we restrict our attention to
binary FSK, PSK, and MSK signaling schemes. One exception that we con-

sider is on-off CW keying.

During a signaling time of T seconds, one of two signals will be

transmitted. L tting Ho be the hypothesis that a signal correspondaing

to "zero" is transmitted and H, be the hypothesis that a 'one' signal is

sent, we have

S

H : m (t) =
(e} [o}

2P cos[Bwf t +9 (t)] (869)
o o
H,: ml(t) = 2P cos[Enfot + al(t)] (70)

as the two types of signal. For FSK we have

47

< vl Lt

ikl Ly AT




eo(t) Awt
and (71)
el(t)

- Awt

Note that the average power for both signals is P, and let p be the
correlation between mo(t) and ml(t). Hence
T
m (thm, (t) dt . (72)
o 1
0]
The signals we consider have the general form given by Eqs. (69)

and (70) . At the receiver the received signal has the form

Ho: r(t) mo(t) + a(t) tglo,T]

(73)

H : r(t) = ml(t) + a(t) te[0,T]
An exception to this simple binary signaling i: on-off keying and

the two AJ signaling schemes which consist of long sequences of such

binary pulses,

18
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IV COHERENT BINARY RECEIVER MODEL

We now consider how the coherent receiver processes the signal
r(t), tel0,T] to determine which binary signal was sent. If the noise
a(t), tel0,T] is a Gaussian process, then the minimum-probability-of-
error receiver has the form shown in Fig. 10. Recail that a(t), te(0,T]

is in our case a non-Gaussian process which is impuisive in character,

./T

; 0

molt! * y A>0 PICK Hg
m, (1) 7 - IF \<O PICX H|

_.é)..__. j(; |

D-7045-49R|

r{t)

FIGURE 10 COHERENT RECEIVER MODEL—NO CLIPPING

Since the noise fluctuation often exceeds the signal peak, in many re-
ceivers a nonlinear clipping function is introduced in the receiving
system before the correlation stage. Thus receivers typically have the

form given by Fig. 11, where

‘B y(t) > B
r'(t) =7y(t) -B < y(t) < B . (74)
-B v(t) < - B

/'T
r(t) af[— r'(t) 0 +

mqit) Y
t g
_-4‘8 ml( ) fT -
0 0-704%-30R:

FIGURE 11 COHERENT RECEIVER MODEL—-CLIPPING
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On the basis of our assumed noise model, the optimum maximum likeli-
hood receiver will certainly be different from the above receiver. In-
deed, the above receiver is not an optimum receiver for any known noise
model; rather, it evolved from classical Gaussiarn noise receivers with
the nonlinearity introduced to get rid of the non-Gaussian impulsiveness

of the noise.

The nonlinear clipping of the received signal is difficult to
analyze,. Watt,25 however, has shown that if the clipping level is
greater than the signal peak then most of the slipping effect is on the
noise peaks. He has shown experimentally that the distribution of sig-
nal and atmospheric noise at a level twice or more abcve the signal peak
is approximately the result of noise only. We therefore make the assump-
tion that when the clipping level is above the signal peak only the
noise sigral peaks are clipped. When one considers the impuls.ve nature
of the noise and the fact that the nonlinear clipper is designed to cl->
nigh noise peaks, this assumption is reasonable. The resulting signal

is shown in Fig. 11, where

r{t) = A en(t) cos[2nf0t + e(t)] + m(t)
(75)
r’(t) = c(t) cos[waot + q(t)] + m(t) s

where m(t) is either mo(t) or ml(t), and c(t) is given by Eq. (€3).

After passing through the nonlinear clipper, the received clipped
signal is now processed in the usual correlator receiver, which computes
a likelihood function M on which it bases a decision. Since correlation

is a8 linear operatior, if th2 noise process
c(t) cos[2wfoi N a(t)] (76)
is Gaussian, then ' is a Gaussiar random variable. Even if the aoise

process is non-Gaussian, if the integraticn time T is large comparcz to

the correlation time of the noisc roc.- . 5 approaches a Gaussisn
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random variable in distribution, This approximation gets better as T

increases., The correlation time of the noise process is roughly

1
IR S (17

which for W = 1000 Hz is 0.5 ms. We consider the signal time for each
bit of approximately 20 ms to be roughly 40 correlation times., Recall
that for small fluctuations the atmospheric noise process has a Gaussian
distribution (Rayleigh envelope) and that large fluctuations which could
normally change the distribution of the 1likelihood ratio A have been
clipped so that their effect on N is reduced. These arguments lead us
to conclude that, although the clipped noise process given by Expression
(76) is Gaussian only for small fluctuations, because of clipping and
the large integration time, ) can be approximated as a Gaussian random
variable. Certainly this approximation is less accurate for the :ails
of the distribution of *». Determination of the accuracy of this assump-
tion is beyond the scope of this study. Wwe alsolsee that, because of
uncertainties in determining signal and noise parameiers, more accuracy

in the error expression it not worth the additionzl effort,.

From Fig. 11 we see that * is given by

T

\o= r'(t)[m (t) - m (t)1 dt , (78)
o 1 J

where

r' () = oe(t) cos[2~fot + g(t)] + m(t) . (79)

Suppuse that Hl is true and consequently that m(t) = ml(t). Then we
have
T
clt) cos[zwfot . a(t)]:mo(t) - ml(t): dt » (o - 1) PT . (80)
0
An error or wroung decision occurs ‘f . is greater than zero. This event

occurs with probabilirty Pc. given by
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P, = Pr{%. > OlHI} . (81)
Defining
a’(t) = c(t) cos[Zﬂfot + e(t)] (82)
and
T
! v
g = a’(O{m (O - m (D} dt (83)
we have
P, =P {g > (1 -0 PTIH}] : (84)
Clearly,
g =0 (85)
and
2. ? = a'(»;)a’(a){n (M = mixt{n (3) - m (2} dads (86)
g - - "o 1 R 0 2 1" ’

The noise process a’(t) is essentially white compared to the parrow-band

s ignals mo(t) and ml(t). Hence

2]

I Al : .
a——a— a'"(q) ... sin 2eM(y - 3)
i 3 o — 2 L 7
a’(A)a’(3) oT (2W) W (o - ) (87)
is like a Dirac delta function in Ef. (86). This gives
2 1'2( ) g 12
R - & 4] , -
g - W / [mo(n) ml(:y)-! do
<G
(88)
2
2 3’74 “
. o= 2(1 - 2) PT
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We know that
lim 2W —e——— = §(1) . (89)

For the front-end bandwidth W sufficiently large that mo(t) and ml(t)

remain unchanged by the front-end filter, this assumption is valid, But

a'%() = c2(v) cosz{waot . c,(t)] (90)
= % cz(t)
Hence
:: L (-9 BT (91)

The error probability is then

P:p‘n - /2p'r(1-5)‘)
© rl ;;‘; ’Cz//Wi ‘
b :’( P“‘T-Sl - s) )
o2

By symmetry we sce that the error probability when mo is sent is the

5,

(92)

same . Hence PU represcents the total error probability. By cellecting

all terms this is given by

2PET()l -
P :( —Pl_.i..._._:“.)_) ‘ (93)
¢ )
¢
where
2
s ) 2- log (BAA) - 2-
2 2 n e
-

A e e oS T

e 1 1 i




NW:%A e " (95)

and

2
Vd = 10 S logloe . (96)

Although not all the receivers we consider have a nonlinear clipper
in the front, nonintentional clipping often occurs when the dynamic range
of the receiver is exceeded by a noise spike., Consequently, Eq. (94)
should still be valid without a clipper if the clip level B is chosen to
be as large as the maximum signal level., Note that

2
loge(B/A) - 2on
1lim § =0 (97)

B a

and

9 1oge(B/A)

limp & ——-4—-§r—- =0 , (98)
B—o ‘\/o
n
hence for large B, c2 approaches
2
P 2.
2 2
lime” =A% e " 5 (99)

B
being the same as the case for no clipping.

The probability-of-error expression of Eq. (93) applies for coherent
FSK, PSK, and MSK signaling schemes. We have developed this expression
here mainly to present a renv~sentative calculation of probability of
error and to point out the assumptions made throughout the remainder of
Part Two. Although the error calculations may differ for other communi-
cation systems of interest, many of the results of this chapter are re-
ferred to in later chapters, We now consider specific modulation-
demodulation schemes, then compute error probabilities, and finally plot

curves of these probabilities for typical parametcrs,
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V  PROBABILITY-OF-ERROR CALCULATIONS

This chapter develops probability-of-error expressions for various
generic modulation-demodulation systems. These systems and the parameters
chosen correspond roughly to existing and plenned future VLF/LF communi-

cation systems.

In all cases, we consider modulation-demodulation systems for binary

signals denoiing Marks and Spaces. We denote T as the time duration of
a single~channel binary signal. In some cases an informatiomn bit may

require the transmission of several channel bits (sometimes referred to
as "'chips'). We also assume that the noise in the channel has a con-

stant spectral density »ver the bandwidth, W, of the receiver's: front-
end bandpass filter. This spectral density is denoted as No watts per
hertz. 1In all cases signal power is constant and given by P watts per

second,

Throughout most of this chapter we assume that the signaling time
is much greater than 1/W, so the test statistics upon which a decision
is based can be approximated as Gaussian randcm variables. With clipping
introduced, this assumption is even more accurate, since large noise
peaks are eliminated, and low noise levels which pass through the clipper
behave like Gaussian noise., This Gaussian assumption is especially good
for an interesting case where integration times are very long compared
to 1/W. 1In the Appendix we take the case where T < 1/W and W is greater
than a few hundred nertz. Hall'® calls this case the "short-duration"
signal and notes that it is very uncommon at VLF and LF. In this case

we use the approach of Bello®® to compute error probabilities.

A, Binary On-Off Keying (CW)

On-off keying is perhaps the simplest modulation technique for
transmitting binary information. An on-off-keyed radio system can be

described as transmitting pulses

’
.
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/?F'sin(wot + @) for Mark
m(t) = (100)

0 for Space

where the signal'duration is T seconds, and the power of the Mark pulse
is P.

The signal (Mark or Space) is transmitted over a channel which adds
atmospheric noise of constant spectral density N0 over the receiver
front-end bandwidth, W, We consider two types of noncoherent receiver

systems, one with clipping in the front end and one without clipping.

We first consider a noncoherent receiver with no clipping. This
consists of a bandpass filter matched to the Mark pulse (except for an

unknown phase), followed by an envelope detector sampled at time T as

shown in Fig., 12, where

h(t) = -\/g sin wo(T - 1) te O, T]

1 ] 2
R
F(1) =mir) + a(t) —a h(1) gg}’gg?;g l'—'*T\’—‘
|

D-7045-132

FIGURE 12 NONCOHERENT DETECTION OF CW PULSE—NO CLIPPING

2
The sampled test statistic, R, is given by

(101)

where

~
»
t

T
2
= = r(t) sin w t dt
T [+
0
T
-\f—-/ r(‘t) cos w t dt
c T (o)
0
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The decision rulz is to compare R2 with a threshold as follows:

R2 > 52 choose Mark

. 2
R < § choose Space .

If a Mark is sent, we have

r(t) = /2P sin[wot + g] + a(t)

and
= in n
r /PT sin g + S
rc=/PTcosg+nc ,
where
’2_.
n = a(t) =~ sin @ t dt
S T []
and
nC = a(t) cos m t dt

(103)

(104)

(105)

(106)

(107)

arc approximated as independent Gaussian random variables with zero mean

and variance No‘2. This assumes that T is large enough to include many

independent samples of the noise. Under this assumption the random

2
variable R~ is & noncentrasl chi-square random veriable of order 2,

Mark is sent, the error probability is

i

[

+
e
c M

-3

When

(108)
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where

‘ 2 a2

Q(a,b) = t exp(- E——%——-: Io(at) dt (109)

is the Marcum Q-function.®” If a Space is sent, we have
(110)

2
and R is a chi-square random variable of order 2. When Space is sent,

the error probability is given by

I
|

2 2
RO =r_+r_ > §|Space

)
1]
g

(111)

"

2]

]

‘C

,-.4.
’Zlo-

Assuming that Marks and Spaces occur with equal probability, the total

unconditioned binary error probability is

—
2 2
11 T 252} 1 | 5% )
Pe =3 3 Q e , N + 35 expl 2 ‘ . (112)
o o
Figure 13 gives this error versus signal-to-noise ratio, PT/NO, for

various normalized thresholds, b = - /25 ’No.

2
Stein and Jones®® show that the threshold &  that minimizes the

~

error probability is approximately
A =N + — . (113)

which gives a minimum errcor probability

11 [2PT PT 1 | pT \!
Pe =3 " -2~Q(-\;;—- . 2 3% )¢ Ecxp,— (l + e )‘ NSO T )]
S+ ] [e] (¢

This is also plotted in ¥Fig. 13.
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FIGURE 13 BINARY ERROR PROBABILITY FOR ON-OFF
KEYING—NO CLIPPING

For large signal-to-noise ratio

PT
w > ! . (115)
Q
w¢ have
PT A PT \_ _ T
Q( s 2 ‘L_’T) 1 0( 7N ) . (116)
o 0 o
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where

2
N R
$(a) = /.z.ﬁexpl 2—-’ dt (117)
is well-tabulated.?’ For large signal-to-noise ratio, we thus have

1 foT 1§ pr |
PeEEQ( ET)+5\.XP'— Z&—$ . (118)
[o] (o]

ror the receiver with front-end clipping, we have the situation

shown in Fig. 14. This receiver differs from the previous case in that

2
— h(n SEN 1YEECLT%;E ° .° %
0-7045%-5)

FIGURE 14 NONCOHEREN. DETECTION OF CW PULSE—CLIPPING

r{(t) is clipped for ‘r(t)] > B. As shown in the previous chapter, when
B~ 2/2P , (119)
mcst of the portion of the signal that is clipped is the part of the re-
ceived signal that is due to high noise peaks. We therefore assume that
the clipper output is approximated by
r'(t) = m(t) + a’(v) , (120)
where

aI.Q\ - c(t) Sin[lot S a(t)] ) (121)

as in Eq. (79). The clipped noise is assumed to hsve spectral density
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2
where ¢ is given by Eq. (94).

Using the new noise density Né after clipping, we have the error

expression

2 2
pe=%-%q(1/§’,’—T , \/§T—)+%exp:- ,; : (123)
o (o] (¢}

This expression depends on signal-to-ncise ratio, P/No, detection

zrr

2
threshold, § , clipping level, g8, receiver front bandwidth, W, signal

duration, T, and noise parameter, V In Fig, 15 we plot P_ versus
e

4
P/NO for optimum thresholds and T = 0.02, W = 1000 Hz, 8 = 2, 8 = 4,

and various values of Vd.

E. Binary Frequency-Shift Keying (FSK)

One of the most common type of binary signaling schemes is the FSK
signaling scheme with a modulation index of one. This scheme results
in a Mark-Spuce signal sequence which has constant amplitude and con-

tinuous phase. The two signal pulses are

ml(t) /2P sin[mot + Amt] for Mark
(124)

m (1)
o

i

2P sin[mot - Amt] for Space ,

where
¥, is the center {reyuency and
Ar = =T, both in radians per second.

This frequency deviation, 3y, corresponds to a modulation index of
one and results in the two pulsces ml(l) and mo(t) being orthogonal.

That is,

m (m (t) dt : O . (125)
o 1
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FIGURE 18  BI¥ARY ERROR PROBABILITY FOR ON-OFF
KEVYING—CLIPPING
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¥e consider coherent and noncoherent detection of these FSK signals
under the two conditions of clipping and no <lipping in the front end of

the receiving system. Classical coherent detection without ary nonlinear

ARt s ATV TR N5 -5

clipping is diagrammed in Fig. 16, where
h(t) = o fa=m (T - t)
1 - PT 1
(126)
1
ho(t) = l-;r-mo(’r - t)
h (1)
e d
r(t)=mit) + a(n)
{ -\
ho (1)
0-7043-82
FIGURE 16 COHERENT DETECTION OF FSK—NQ CLIPPING
The sampicd test statistic is given by
rpory R
where
T
[F ]
r1 : / r(t) NG T nm[mot . f,uJ dt
0
T (127,

<RI L

i bt et R, B,
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The decision rule is to compare A with zero, as follows,

A>0 choose Mark
(128)

A<= 0 choose Space s

where, as usual, we assume that Marks and Spaces occur with equal proba-
bility. Note that the coherent receiver is merely another representa-
tion of the correlation receiver of Fig. 10. The error probability with

. 2,2 24%
no clipping is given by Eq. (93) with g = 0 and ¢ = A" e

Hence
PT
Pe = @( ﬁ_) y (129)
o
since
2 ZGi
A e = 2NOW . (130)

With clipping in the front end we lave, from Eq. (93) with 5 = 0

2 J

2PWT
P = — 131
e @(-\/ = ) s ( )

where
2 [ , 2
- 9 2gn Loge(B/A) - 2gn 9 loge(B/A)
c =A e 1 -3 + B & (132)
g~ ‘ ; ;3
n n
20
1 2
NOW :2—A e
(133)
vV, =10 2 1
da =7 In 1980°
Choosing
B = g/2P , (134)
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we rewrite P_ in terms of parameters P, N B Vd, T, and W:

%

P, = Y| o ] , (135)
- & —
Noll (D) + B N Q(E)‘
[o]
where
20 log_(B//W) + 10 log_(P/N ) - 2V_ log_ 10
D - e __e ) d e (136)
d
20 7o 108, 10
and
20 log (B//W) + 10 log (P/N ) + 2V, log_ 10
E - e e o) d e ' (137)

vd
20 10 loge 10

Figure 17 plots Pe for FS¥ signals for various parameters of interest.
Here 3 represents the clipping levei o ove the signal peak of /2P. For
example, 3 = 2 meins that the clippinr level is set at B = 2/2P or twice

the signal pcak amplitude,

For rspcouserent detection without clipping, we have filters matched
to the M v a:ud <pace puises (except for an unknown phase), followed by
envelope detectors sampled at time T, as shown in Fig. 18, where the

sampled test statistic 5 is given by

2 2

\ = -

- Rl Ro

2 2 2 138)
R1 11S + tlc (13
2 2 2

R :r + 1

(V) Qs oc

The terms rl and rlc arc the sine and cosine components of the received
s .
signal relative to the Mark frequency. Similarly, s and L arc the

components relaiive to the Space frequency.

Recalling that ml(t) and m (t) arc ortaogonal or uncorrelated, we
O :

sce that the mustched filters hl(t) and ho(t) arc also orthegonal. This
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ENVELOPE
hy (1) DETECTOR

r(t)=m(t)+0a(1)

ENVELOPE
DETECTOR T

ho(t)

D-7048-47

FIGURE 18 NONCOHERENT DETECTION OF FSK—NO CLIPPING

means that the outputs at time T of the matched filters have noise com~
ponents that are uncorrelated and, since they are assumed to be Gaussian
random variables, independent., Assuming a Mark is sent, we then have
Ri, a noncentral chi-square random variable, and Ri, a central chi-
square random variable. Perhaps a conceptually simpler representation

of the noncoherent receiver process is that given in Fig. 19, where

X

i

¢,

r(t)

0-T048-48

FIGURE 19 NONCOHERENT FSK DETECTOR REPRESENTATION
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cos[ o + Awt

(139)

[u)ot - Awt

Awt]

If a Mark is sent, the probability of error is found from the dis-

o (t) = 51n[w t
oS

2 ‘
tribution of Rl - Ri. First, defin= vectors

£1 = r = . (140)

~

Since a Mark is sent, r, consists of signal plus noise, while r, consists

of noise alone. Hence,

e /PT cos g + LR
r, = = (141)
=i
Ty - /PT sin g + g
= E + El
r n
oc oc
r = = = n , (142)
—o -0
r n
L os os
where g is an unknown phase term, and Do Mgr e n,s 8T¢ independent,

zero-mean Gaussian random varisbles with common variance N0/2. Using the

notation

2 2
H£1” *Te * Nis '
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we have

& = {12 = lm v o)1
R = i 112 = Jinl1?

The probability of error is

ol
]

o 1>r=A < 0\51:

:i-a <0\H

Pl m 11 - [l 11® < o]

. lHim + m 117 < L)1)

]f L"r}\\ao\\z SIERENI

n = Q{PBI@ dg

But
|~ exp)- 2
o llin I[P ) e L
2
gl 1% 5 e« 1o, = ) = ool e all
Also,

2
1 ’
pn (:I) = :_r; exp:~ LL%-LL—'
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(144)

(145)

(146)

(147)




o

Hence
1 ‘ m + [ o '
P = —_— - = d
° -cn—mﬂNo expl NO ‘g
(148)
2
1 l!’.’l”'
= = exp,-
A L
or
P - Lex j,;.; . (119

Although this expression is derived for FSK signals, it applies in

general for noncoherent detection of binary orthogonal signals,

With nonlinear clipping, we can follow arguments similar to the

earlier results to get an error probability

1 ‘p'r)
Pe = E ex l- —N—" , (150)
where Né satisfies
. 1 2

Now =3¢ s (151)

or, in terms of basic parameters,

A R z

No = Noll $(D) ) ( )Q(E)‘ R (152)

where D and E are given - Eqs. (136) and (137). Equation (150) is

plotted for various parasmeters in Fig. 20.

C. Binary Phase-Shift Keying (PSK)

Although PSK is not commonly used at VLF/LF, we present it here
because it is similar to the minimum-shift-keying (MSK) scheme now
planned for seversl new VLF/LF systems. For binary PSK, the two signals

are
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ml(t)

m (t) .
o

Note that for this signal set we have simply

/2P sin w t for Mark

(153)

- /2P sin w t for Space

(154)

Coherent detection without any nonlinear clipping is simply represented

in the receiver of Fig;_lo, and the error probability is given by Eq.

2
(93) with p = - 1 and c2 = A2 e20“. Hence,
P
N
o
Since
2c2
2 n
A e = 2N VW
o)

We plot this curve in Fig. 21 where

|4 | 4
(o] <

dh

With clipping in the front end, we have {rom Eq.

P = Q( ﬂz‘;{) ,
CZ

where, as bifore,

(93) with 5 = ~ 1

(155)

(156)

(157)

7

(158)

2. ‘ log _(B/A) - 2~i '

¢ = A ¢ '1 -} N /jr—

V n
. log (B’A)
. B gl—-—"

N
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Again, choosing the clipping level,
B = g72F (160)
we can write Pe in terms of parameters P, No’ g, Vd, T, and W,
2
I e T ; , (161)
» - & —
Nl = #D) + B (No")“m‘

where D and E are defined ip Eqs. (136) and (137).

Noncoherent detection of PSK signals does not exist, except perhaps
ith a phase reference signal. Suppose, for example, beside the Mark-
Spacce signals we have a reference signal piven by
(162)

q{t) -’ shizbt s




which is first transmitted during time [-T,0]. Then, during time interval
[-T,01,

r'(t) = /2P sin(y t + g} + n'(V) tel-T,01 (163)

is received, while during [0,T],

r(t) = /2P sin(w t + g) + n(t) for Mark
(164)
r(t) = - /2P sin(w t + g} + n(t) for Space
is received.
Th? situation is equivalent to receiving a total signal
r’(t) tg[-T,’)]
rT(t) = (165)

r(t) tel0,T)

in [-T,T] on which to base a decision on whether a Mark or a Space has

bcen sent. Defining signals

‘q(t) te(-T,0]
mI(t) -, (166)
Iml(t) tel0,T]

and

‘q(t) te(~T,0
ml) = , (167)
(o]

lmo(t) telv,7]
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we have

T . 0 T
T, .. T 2 ,
ml(t)mo(t)dt = /. q (t)dt + mo(t)ml(t)dt (168)
-T J-t
= PT - PT
=0

We have the situation where two orthogonal signals are transmitted over
[-T,Ti with a random phase g. Noncoherent detection of such signals is
precisely the same as noncoherent detection of FSK signals (orthogonal

signals) of total duration 2T. Hence, from Eq. (149), we have

(169)

for noncoherent detcction of PSK signals with a reference signal ss
stated above. For the case with clipping we have, from the results of

FSK, the error probability

1 PT
Pe = 5 exp:- §7{ . (170)
o
where
N 2N 1 - 3D) . 32( P \ery! (171)
0 0' - .xow ‘

The most common reference signal is the previously transmitted Mark or

Space signai. This mcans that cach transmitted signal is modulated rela-

tive to the previously transmitted signal. This efficicent mode of non-
coherent operation, called differential -phase shift keying (DPSK),

results in the binsry error probabilities given asbove,

75




D. Binary Minimum-Shift Keying {(MSK) . !

Minimum shift keying is a patented scheme developed by the Collins
Radio Company. This modulation scheme gives a signal in the channel
that Jooks like FSK with a modulation index of m = 1/2, Normally FSK
modulation with m = 1/2 would require discontinuous phase changes, which
would be difficult for VLF/LF transmitters to handle. The MSK scheme
gives continuous phase and an improved performance equivalzant to that of

PSK mod=*lation,

Consider a basic information source that generates a Mark or Spacc
once every T seconds. This binary information sequence is alternatively
used to modulate two PSK modulators that arc -1/2 radians out of phase
with each other. This results in two PSK signal sequences where phase
changes occur at odd times (T, 3T, 5T, ...) in onc and at cven times
(0, 2T, 4T, ...) in the other. The tvo PSK signals are amplitude modu-

lated by /2P sin w, t and /2P cos u, t, respectively, and summed before

1
transmission., See Fig. 22, where w = n/2T,

vﬁﬁ;sm wt

sin(wgt+8y)

—= PSK -X)
(l) +
SOURCE 2P cos uht S(t)
T m +
2 cos(wot+6)) 1
—! PSK T e )—
D-7045-48
FIGURE 22 MSK MCDULATOR REPRESENTATION
b . ]
S . S 5 2 + CO8 ! i + o
(V) 2P (S10 Lt singut a ) s cos wt cos| gt y)\
‘0
B = ' changes at T, 3T, 5T, ... (172)
| ’
8 = changes at 0, 2T, 4T

y !
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The signal S(t) shown above appears as a continuous phase FSK
signal with a mocdulation index of m = 1/2., Coherent detection is accom-
plished by separating the signal plus noise into two separate PSK-like

signal~-plus-noise sequences which are detected separately as shown in

0s(t) = -\/-E,I:_sin wlt sin wot

Fig. 23, where

(173)
oo(t) = -\/,%'cos wlt cos mot
and
2T
os(t)oc(t) dt = 0
0
(174)
3T
7

j o (t)e (1) dt =0
T

b(t)
) = . o] {3
—-(g\r—- s e
| J: 1 =1 T,37,...

r(t) ?}
¢ (1) T

¢ 7
Ac A >0
—®— /. T

=>I

0-7045-48

FIGURE 23 COHERENT MSK DETECTOR—NO CLIPPING

Since cach side of the detector is essentially a PSK detector, the
performance is that of cohcrent PSK detection with average power 1/2 P
and signal duration 2T which results in total signal energy PT per trans-
mitted Mark or Spacec. Hence, for cach transmitted bit, the error proba-

bility for this coherent detector is

e e et s




e —— T

2PT
Pe = @('\ /E-) (175)

when no clipping is employed. This is plotied in Fig. 24 for T = 0,02,

BINARY ERROR PROBABILITY, P,

l "
o} 5 10 15 20 25 30 35 40
SIGNAL ~TO-NOISE RATIO,P/Ny——— dR 0-7045-106

FIGURE 24 BINARY ERROR PROBABILITY FOR COHERENT MSK-—
NO CLIPPING

With clipping we have

2PT

by . a2
Ng L - ¥ a(

P =3 (176)

e P

N
N W )Q(h)\
o
just as in normal PSK signaling schemes. These probabilities are plotted
in Fig. 25.

We¢ were able to treat each side of the detector separately because
of the orthogonality property of cs(t) and oc(t) shown in Eq. (174) and

the fact that we have exact knowledge of the signal phase, We consider
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now the difficult problem of operating in a differential mode similer to

differential phase shift keying.

Suppose we have a reference signal

q(t) = ,/'Z‘P"sin w.t sin wot + €OS W

]
' ) t cos(ut + e}’,)‘ (177)

1

which is transmitted during [-T,T] and received as

r’'e) = /2P ‘sin w,t sin(wot - 9) + cos w,t cos(wot + 6;, - 9): + n'(t)

| 1 1
(178)
j vefining
oss(t) = \/%-sm ot sin wt
' wsc(t) = \/frsin wlt cos wot
i (179)
i 2 }
| ¢ (t) = — cos w. t sin o t
: cs T 1 o)
(t) = 2 cos .t cos t
oC'c - T 4 Yo ’

we now consider how uncertainty in the phase of the transmitted signal
can cause some mutual interference between the two PSK sides of the

detector. Consider

T
r! = r’(t)e_ (t) dt (180)
s ss
T
\ T
P 2 < .
= 2-\/,-1‘—_sin mlt sxn[J,ot g] sin not dt
-T
| T
f + 2 Esin-xtcoswtcos'xtce'~q sin g t dt
: T 1 1 (3 y o
: T
+ n'
S
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But

T
2 v sin2 t sin t - sin t dt
T o % ® %o
-T (181)
= /PT cos ¢ R
and
T
r .
2_\/{ sin wlt cos wlt cos[wot + ey 9] sin wot dt
~T
T
1 P . s . 1.
=3 T sin 2u)1t sin g sin ey da*
-T
5! = 0 in [-2T,2T]
0 y
g"7 = = in [-2T,2T]

= % /PT sin g 8’ = 0 in [-2T,0], 9; = m in [0,2T] . \182)

2

- = /PT sin g g/ = in [-2T,0], g)’( = 0 in [0,2T)

\

In summary, we have

r’ = PTcos g + n’
S : S
9\( = 0 in [-2T,2T)
0 \
e)’_ =~ in [-2T,2T)
0
+{ = /PT sin a a)’ = 0 in [-27,01], e; = v in [0,2T] . (183)

1N

PT sin a3 3' = -~ in (-21,01], a){ -0 in [0.2T]
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Similarly,

rc’z-/FTsin9+né

e}', = 0 in [~2T,2T]
]
e; = 7w in [-2T,2T)
+ %-/FT cos 9 e; = 0 in [-2T, 0], 9; = m in [0,2T} . (184)

2
- - /PT cos g e; = n in [-2T,0], e)’, 0 in [0,2T]
Here n; and né are independent zero-mean Gaussian random variables with
variance No/2. Defining the random variable that takes on one of three

values with the following probabilities,

!
e

k]

n

(185)

o
1]
=)
o
1]

B N = ]
-

we can represent the sine and cosine components of our reference signal

as

~
[}

! _/ﬁ’fcosg+né+?/ﬂ"sin9
(186)
r’ = - /PT sin g + né + §§4/FT cos @

This shows that, besides the noise terms n; and né, the reference signal
can be corrupte’ by a strong interference term due to the signals in the
other half of the detector. This means that using MSK on a bit-by-'bit
differential mode is impractical. We shall see, however, that taking a
long stream of such channel bits (chips) to form s reference for another

long stream of bits (or chips) can result in good performance.
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Suppose that we now take N binary MSK channel bits or chips to
transmit a single Mark or Space. This can be accomplished, for example
by transmitting a pseudo-random binary sequence of chips for Mark and
its negative for Space. Assume that we take N pseudo-randomly generated
binary MSK chips to transmit a Mark or Space, and suppose that the N
bits of the previousiy transmitted Mark or Space are used as a phase
reference., This means that we have a noncoherent differential mode of
operation on N chips, similar tc the differential PSK scheme described

earlier.

Collecting the N sine and cosine components of our previously trans-

mitted signal, we have

N
' ‘
Rs = E rs(k)
k=1
N
= N/PT cos ¢ + E n;(k) (187)
k=1
N
+ = /PT sin g E 8
k=1
and
N
R' = !‘l(k)
c z : c
k=1
N
= - N/PT sin g + g né(k) (188)
k=1
N
+ g /PT si 5
n na k ?
k=1

as the sine and cosine components of our reference sequence where the

t
index k corresponds to the k h chip in the referenc~ scequence. The terms
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N

N’ =§ n’ (k) (189)
C (o

k=1

pen: S

and

N

N’ =Z n’ (k) (190)
S S

k=1

are independent zeiro-mean Gaussian random variables with variance NNO/2.
i Assuming that chip sequences are pseudo-randomly generated, we can take

the random variables {5k}:_1 to be independent, so that the sequence

N
’
D" = E 6k (191)
k=1

approaches a Gaussian random variable in distribution as N gets large,

6 tmnc. i

The sine and cosine components of the reference signal are thus

2
R; = N/PT cos ¢ + N; + = /PT sin g D’
(192)
2
R’ = - N/PT sin g + N/ + = /PT cos 3 D’ ,
¢ c -

where N;, Né, and D’ are independent zero-mean Gaussian random variables

(0’ being assumed to be Gaussian) with variances

2
N = N’ = NN /2
[of [e]

(=]
1t

N/2 . (193)

Note that the noise components due to the interference,

PT sin a D’

)0

(194)

1)
D
o

-

/PT cos 3

H4




. form a vector that is orthogonal to the signal vector formed by

R N/PT cos g ,

e e e

(195) 3

-N/PT sin g

This means that, since noise that is orthogonal to the signal vector can

only cause errors, the noise term due to interference is equivalent to a

noise vector having equal energy in all directions of energy,

EE PT N (196)

3

in any given direction. A similar argument applies to the transmitted

signal. Hence the differential MSK sequence of length N performs like

a differential PSK scheme with signal energy

- N PT (197)

. and noise spectral density

‘N
{ o PT i
N(z + 2) . (198) ;

%
1 PT I !
. PQ =3 expl N —%pT ‘ (199) ¢
N + Ia
o 2 i
Ral

or

‘ . ;
: ‘ T I .

exp = N|—m—— (200)
I ~“X + 2PT ’
[s)

This expression, which assumes that no clipping has occurred, is plotted

in Fig. 26. With clipping we have i
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FIGURE 26 BINARY ERROR PROBABILITY FOR DIFFERENTIAL MSK

where, as before,

, 2( 2 ) p!
NO = NO 1 -8 +8 (NOW)Q(E)‘ . (202)

E. M-ary Minimum Shift Keying

We now consider schemes that take N binary MSK chips to transmit
one of M messages. In general, the performance of these schemes is
difficult to evaluate, so we must resort to finding upper bounds on the
error probabilities. In this section, we restrict ourselves to two
M-ary signal schemes, cohkerent orthogonal signals, and coherent pseudo-

randomly generated signals.

Suppcose that the M signals consisting of 8 sequence of binary MSK

chips sare represented by
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N-1
s, (1) = E sijp(t - JT) te[O,NT] i=1, ..., M , (203)

j=0
where
A1
siJ =1-1’ and
p(t) is a pulse of duration T and energy PT.
Also, let

r(t)  tel0,NT]

be the received signal which consists of the transmitted signal plus
additive atmospheric noise with spectral density NO/Z as before. De-
fining
NT
\‘f\\z = £2(t) at (209)
0

for any time function f(1) over [0,NT), we consider events

! 2 1 J !
eik = ‘\\r - sk\‘ < Hr - si“ s, is sents (205)
for i, k =1, 2, ..., M. If the ith signal is traasmitted and an optimum

white Gaussian noise receiver is used (as in the case of interest), the
th . .
k signgl is mistakenly assumed to have been sent by the reuceiver when

the event eik occurs. This event occurs with probability

s, - s.'\
) ‘ "k il '
rli-ik) Prln > 2 ‘

(206)
. ‘lsk - 51‘1

th .
In general, when the i signal is transmitted, an error occurs if one

or more of the events
€. kK = 1,2, ..., M ; k # i (207)
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th
occurs. Hence, the error probability when the i signal is transmitted

is given by

M

| L.
Pr:elsi is sent; = Py €
k=1

k#1
A well-known property of probabilities is that the probability of
of events is less than the sum of the probabilities of each event.

we have a bound

n

[fai]z
o

5 _
o

[

=

P ‘Els, is sent'
r| i
k=1
k#1i
or
M
P ‘8\5 is sent' < ) “sk Si\[
r| 7' f 7!ﬁ°
k=1
k# i
When there is an orthogonal signal set, then
NT
\ _ .
/ si(t)sk(t, dt = 0 k # 1
0
and

Hsi—sk”z:ZNPT k # i

Thus, for the orthogonal signal set, we have

M
lels, s | Z ~ [FET
Prie‘si is sent‘ < Q( X )
k=1 °

k#1

Pr:B‘si is sent: <M Q( N—I)

88

(208)

a union

Hence,

(209)

(210)

(211)

1212)

(213

(214)




Since this bound does not depend on which signal is sent, the error
probability when any signal is sent has the same bound. The probability

of error, Pe, when any signal is sent is thus bounded by,

P, <M @( N—) , (215)

o

which is plotted in Fig. 27,
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FIGURE 27 CHARACTER ERROR PROBABILITY
OF MSK SEQUENCES

When the signals are not orthogonal but are generated pseudo-
randomly by independent pseudo~random-sequence generators, Eq. (213)
tl
still applies. Hence, when the i b signal is sent, the error probability

is bounded by
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e

M
Pr}E\si is sent <

M

(Hs -S-H)
4 . (216)
k=1

k#i
In general, we are interested not in the performance of a given pseudo-
randomly generated signal set but in the average per{ormance when a large
class of such signal sets are used, Hence, when 84 is sent, we are
interested in the average error probability where we average over the
whole ensemble of pseudo-randomly generated signal sets,
of Eq. (216) we have,

P {Els is seng} :E:: (l‘s i ‘|) . (217)

k#l

Taking averages

The error function has a bound

8(x) < exp;- ’2‘—; , (218)

so that Eq. (217) can be further bounded hy

M 2
_ Z s, - 5,1l
Pr{elsi is sent} < expi- ———p—— . (219)
k=1 °
k#i
Note that
2 ' 2
‘\sk - Si\l = [sk(t) - si(t)] dt
0
(220)
N-1 9
) pTZ [skJ B 13]
Jj=0
Thus
2 N-1
‘ ‘\sk - 51‘\ ) [ pr 2|
expl- N ‘ = | exp'— o (skJ - sij) ’ . (221)
j=0 °
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We assume that the ensemble of signal sets is generated in such a manner

that the components of any signal are essentially independent of each
other and of other signal components and take on either +1 or -1 with

equal probability. Hence,

N-1 - |
TT exol- B s, - 5,12 = foxo] B (5, - 5y,

*P)” AN (55 = 215) [ TP an (55 = 214)
3=0 (o] L o

(222)
1 1 | et
= E+§€XPI‘N—‘

i o

The total probability of error, given that si is transmitted, is bounded

by
M )
N
. 1 1 PT
Pr:ﬁ\si is sent: <Z 5+*5 exp;- ﬁ—; s (223)
k=1 °
k#i
or
1 1| er]l¥
Pe < M 7 + 5 exp'- ﬁ;‘ (2249)

is the bound on the probability that any signal transmitted gives an

error. Equation (224) can be written in a more familiar form as,

‘ 2 1
Pe-/ M exp - N log : . (225)

)

This is plotted in Fig, 27,
In both Eq. (215) and Eq. (225), for the case of front end non-
lincar clipping, the term No is again replaced by

‘ 2{ p
! - e
N, = No'l (D) + 8 (NOW)Q(E)‘ (226)

as before.
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In the preceding derivation of the performance of typical equip-
ment modems in the presence of atmospheric noise, improvement is shown
to result from wideband clipping at the front end of the receiver. The
development accounts for the reduction in impulsive noise by the clipper
and hence predicts an improvement in signal-to-noise ratio in the stages
of the receiver following the clipper. While the predicted improvement
is valid when the clipping level is well above the rms noise level in
the wideband portion of the receiver, when the noise clipper is active
an appreciable fraction of the time these predictions become inaccurate.
One reason for this inaccuracy is that account is not taken of the loss

in signal energy as a result of the operation of the noise clipper.

An approximate correction may be made as follows:

let PB = probability that the noise level exceeds the clipping

level, B,

Then, during the time that the clipper is saturated by large noise pulses,
no signal power is transmitted through the clipper, and the loss in sig-

nal power is given by:
1

1 - PB

P
P_'_

All appropriate curves in this report include this correction.
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V1 CONCLUSION

We have computed the performance of several generic VLF/LF
modulation-demodulation schemes, using the atmo-pheric noise model de-
veloped in Part One. In general, these calculations assume that the
integration time T (baud time) is large enough so that the integrator
output is Gaussian in distribution. When clipping is performed before |,
integration, this assumption is even better, For the case of no clipping,
this analysis results in classical white Gaussian noise error proba-
bilities. With clipping, the detail properties of atmospheric noise
become impor%ant, and such parameters as front-end bandwidth (W), clip
level relative to signal peak (B), and noise voltage deviation (Vd) be-

come important.
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APPENDIX

Here we consider coherent PSK and MSK performance when the inte-
gration time T is small compared to the atmospheric noise correlation

time and when no clipping is introduced., First consider the PSK signals

$,(t) = /2P sin w t 0stsT
(227)
Sl(t) = = /2P sin wot 0<ts<T

Suppose that the signal So(t) is transmitted. The received signal is

then
n(t)
r(t) =A e cos [wot + 9] + So(t) . (228)

The coherent receiver correlates the received signal with

AS(L) = So(t) - Sl(t)
(229)
= 2/2P sin w t
to obtain the test statistics
T
A= r(t) AS(t) dt
0
T (230)
= 2PT + 2 A et cos [mot + 9] /2P sin w t dt
0
The receiver bases its decision on . in the following way:
1f >0 , choose So
(231)
1f <0 . choose S1
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We now make the assumption that T is small enough so that n(t) and

g are essentially constant over the time interval [0,T]. Therefore

>
n

T
2PT + 28 e /‘21’/ cos [wot + e] sin @ t dt
0

(232)

2PT + /2P A €' T sin ¢

An error occurs if A € 0 when So(t)"is transmitted. Hence the

error probability is

d
!

=P ‘k < O\S is sent'
e r| o j

pr:m +/26A " T sin g < o{ (233)

i

I el
Prte sin g < A ‘
Since we assume that ¢ is completely unknown, we assume that it has

uniform probability over [0,2n]. Consequently, its probability density

is

}— 0 £y € 2n
2n
P () = (234)
9
0 elsewhere

Since sin g can be positive or negative with equal probability, by

symmetry we have

P =P ‘e" sin g 2 ‘—P-' . (235)
e rl A ‘
Clearly, when m < § < 2m,
e” sin 8> £§E (236)
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‘ n 1
Pe = Pr'e sin g > ZEE\ei 5 d
0
m
- %; pr;en > T%\e; do (237)
0
i _J/?F
1 i loge (A sin e)

E [ )
4} n

Ry symmetry ve note that the same error probability applies when
Sl(t) is transmitted., Hence the total binary error probability for co-
herent binary PSK with integration time T smaller than the noise corre-

lation time is given by

_ Ll
e  2n

y o= (__&_)

A sin g

(238)
0 “n

This error probability is generally difficult to evaluate except by

approximation and computer techniques. Coherent MSK also .as this form

for the probability of making a binary error.
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